
FORMALITY CONJECTURE

by Maxim Kontsevich

1. Introduction

This paper is devoted to a conjecture concerning the deformation quantization. This conjecture im-
plies that arbitrary smooth Poisson manifold can be formally quantized, and the equivalence class of the
resulting algebra is canonically defined. In other terms, it means that non-commutative geometry, in the
formal approximation to the commutative geometry of smooth spaces, is described by the semi-classical
approximation.

Recently an article by A. Voronov (see [V]) with the exposition of the formality conjecture appeared on
the net. The present paper can be seen as a companion to [V]. Here I present the conjecture in a slightly
different form. In order to do it I include some preparational material on deformation theory and homotopy
theory of differential graded Lie algebras. Brute force calculations confirm (locally) the conjecture up to the
6-th order in the perturbation theory. As a by-product I obtained a formula for a new flow on the space of
germs of Poisson manifolds. Also I propose a reformulation of the conjecture and further evidences.

1.1. Deformation quantization

Let A be the algebra of smooth functions on a C∞-manifold X . We are interested in star-products on
A (see [BBFLS]), i.e. associative R[[h̄]]-linear products on A[[h̄]] given by formulas

(f, g) 7→ f ∗ g = fg + h̄B1(f, g) + h̄2B2(f, g) + . . . ∈ A[[h̄]]

where h̄ is the formal variable, and Bi are bi-differential operators. There is a natural gauge group acting
on star-products. It acts via linear transformations A−→A parametrized by h̄:

f 7→ f + h̄D1(f) + h̄2D2(f) + . . .

where Di are differential operators. The formality conjecture will give a clear picture of star-products. In
particular, for any Poisson bracket B1, there should be a canonical gauge equivalence class of star-products
with B1 as the first term.

2. Deformation theory via differential graded Lie algebras

This part is essentially standard (see [GM], [HS1], [SS], ...).
Let g be a differential graded Lie algebra over a field of characteristic zero:

g =
⊕

k∈Z

gk, [ , ] : gk ⊗ gl−→gk+l, d : gk−→gk+1, d2 = 0 .

In other words, g is a Lie algebra in the tensor category of complexes of vector spaces.
We associate with it a functor Def on finite-dimensional commutative associative algebras over the

same ground field with values in the category of sets.
First of all, let us assume that g is a nilpotent Lie superalgebra. We define set M(g) (the set of solutions

of the Maurer-Cartan equation) by the formula

M(g) :=

{

γ ∈ g1| dγ +
1

2
[γ, γ] = 0

}

/Γ0
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where Γ0 is the nilpotent group associated with the nilpotent Lie algebra g0. The action of Γ0 can be defined
by the exponentiation of the infinitesimal action of its Lie algebra:

α ∈ g0 7→ (γ̇ = dα + [α, γ]) .

Now we are ready to define the functor Def . Technically, it is convenient to define it on the category
of finite-dimensional nilpotent commutative associative algebras without unit. Let m be such an algebra,
mdimm+1 = 0. The functor is given (on objects) by the formula

Def(m) = M(g ⊗ m) .

In the conventional approach m is the maximal ideal in a finite-dimensional Artin algebra with unit

m′ := m ⊕ (ground field) · 1 .

In general, it is convenient to think about a commutative associative algebras without unit as about
objects dual to spaces with base points. Algebra corresponding to a space with a base point is the algebra
of functions vanishing at the base point.

2.1. Examples

There are many standard examples of differential graded Lie algebras and related moduli problems. We
recall two cases:

1) Let X be a complex manifold. Define gk for k ≥ 0 as

Γ(X, Ω0,k ⊗ T 1,0)

with the differential equal to ∂ and the Lie bracket coming from the cup-product on ∂-forms and the usual Lie
bracket on holomorphic vector fields. Then the deformation functor related with g is canonically equivalent
to the usual deformation functor for complex structures on X .

2) Let A be an associative algebra. We define gk for k ≥ −1 as Hom(A⊗(k+1), A). The differential
is the usual differential in the Hochschild complex, and the Lie bracket is the Gerstenhaber bracket. We
would like to recall here the definition of these structures. Let F denote the free coassociative graded super
coalgebra with counit cogenerated by the graded vector space A[1], i.e. A endowed with the pure grading in
degree −1. Then g is the Lie algebra of coderivations of F in the tensor category of Z-graded super vector
spaces. The associative product on A defines an element m ∈ g1 satisfying the equation [m, m] = 0. The
differential d in g is defined as ad(m). Again, the deformation functor related with g is equivalent to the
usual deformation functor for algebraic structures.

3. L∞-morphisms, L∞-algebras and quasi-isomorphisms

Let g1 and g2 be two differential graded Lie algebras.

Definition. A pre-L∞-morphism f from g1 to g2 is an infinite sequence of linear maps f = (f1, f2, . . .)
between Z-graded vector spaces:

f1 : g1−→g2

f2 : ∧2(g1)−→g2[−1]

f3 : ∧3(g1)−→g2[−2]

. . .

In formulas above the exterior power of g1 is taken in the tensor category of graded super vector spaces.
The suffix [n], n ∈ Z denotes the tensor product with the standard one-dimensional space endowed with the
grading in degree −n. Thus, in plain terms we have a collection of linear maps between graded components

f(k1,...,kn) : gk1
1 ⊗ . . . ⊗ gkn

1 −→g
k1+...+kn+(1−n)
2
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with the symmetry property

f(k1,...,kn)(γ1 ⊗ . . . ⊗ γn) = −(−1)kiki+1f(k1,...,ki+1,ki,...,kn)(γ1 ⊗ . . . ⊗ γi+1 ⊗ γi ⊗ . . . ⊗ γn) .

As we see, in this definition we use only the structure of graded vector spaces on g1,g2.
With any graded vector space g we associate the cofree coassociative cocommutative graded superalgebra

without counit cogenerated by g[1]:

C(g) :=
∞
⊕

k=1

Symk(g[1]) =
∞
⊕

k=1

∧k(g)[k] .

Notice that in this definition we use g with the reversed parity.
Intuitively, we think of C(g) as of an object corresponding to a formal supermanifold with a based point,

possibly infinite-dimensional:

(Formal neighborhood of zero in g[1], 0) .

The reason for this is that if g is finite-dimensional then the dual space to C(g) is the algebra of formal power
series vanishing at the origin on the super vector space g[1]. Pre-L∞-morphisms from g1 to g2 correspond
to graded morphisms of coalgebras

C(g1)−→C(g2)

and (intuitively) to maps between formal supermanifolds with based points.
Suppose now that g is a differential graded Lie algebra. Then it is easy to see that the differential

and the Lie bracket in g define a differential Q, Q2 = 0 of degree +1 of the coalgebra C(g). In the case
of ordinary Lie algebras (in degree 0) we get the standard reduced chain complex. In geometrical terms,
we have an action of (0|1)-dimensional graded abelian Lie supergroup A1[−1] on a formal supermanifold
preserving the base point.

The chain complex of a differential graded Lie algebra gives a formal supermanifold with a flat structure
in which the odd vector field Q generating A1[−1]-action has terms of degree 1 and 2 only in the Taylor
expansion at the origin.

In paper [AKSZ] supermanifolds with the action of A1[−1] are called Q-manifolds. By analogy, we
introduce here the following

Definition. A formal Q-manifold is a differential graded coalgebra C which is isomorphic as a graded
coalgebra to C(g) for some graded vector space g.

We want to stress that the specific isomorphism between C and C(g) is not considered as a part of data.
If we fix it, then we will obtain so called L∞-algebra (or homotopy Lie algebras, see [HS2]).

Definition. An L∞-algebra is a graded vector space g and a differential Q of degree +1 on the graded
coalgebra C(g).

The structure of an L∞-algebra is given by the infinite sequence of Taylor coefficients Qi of the odd
vector field Q (coderivation of C(g)):

Q1 : g−→g[−1]

Q2 : ∧2(g)−→g

Q3 : ∧3(g)−→g[1]

. . .

The condition Q2 = 0 can be translated into an infinite sequence of quadratic constraints on polylinear
maps Qi. First of these constraints means that Q1 is the differential of the graded space g. The second
constraint means that Q2 is a skew-symmetric bilinear product on g compatible with Q1 by the Leibnitz
rule. The third constraint means that Q2 satisfies the Jacobi identity up to homotopy given by Q3, etc. .
As we have seen, a differential graded Lie algebra is the same as an L∞-algebra with Q3 = Q4 = . . . = 0.

Nevertheless, I recommend to return to the geometric point of view and think in terms of formal Q-
manifolds. This naturally leads to the following
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Definition. An L∞-morphism between two L∞-algebras is a morphism between corresponding differential
graded cocommutative coalgebras.

For the case of differential graded Lie algebras an L∞-morphism can be identified with a pre-L∞-
morphism satisfying the following equation for any n = 1, 2 . . . :

dfn(γ1 ∧ γ2 ∧ . . . ∧ γn) −

n
∑

i=1

±fn(γ1 ∧ . . . ∧ dγi ∧ . . . ∧ γn) =

=
1

2

∑

k,l≥1, k+l=n

1

k!l!

∑

σ∈Σn

±[fk(γσ1 ∧ . . . ∧ γσk
), fl(γσk+1

∧ . . . ∧ γσn
)] +

∑

i<j

±fn−1([γi, γj ] ∧ γ1 ∧ . . . ∧ γn) .

Here are first two equations in the explicit form:

df1(γ1) = f1(dγ1) ,

df2(γ1 ∧ γ2) − f2(dγ1 ∧ γ2) − (−1)deg(γ1)f2(γ1 ∧ dγ2) = f1([γ1, γ2]) − [f1(γ1), f1(γ2)] .

We see that f1 is a morphism of complexes.
L∞-morphisms generalize usual morphisms of differential graded Lie algebras. We call a L∞-morphism f

a quasi-isomorphism iff the first component f1 induces isomorphism between cohomology groups of complexes
g1 and g2.

The essence of the homotopy/deformation theory is contained in the following

Theorem. Let f be an L∞-morphism form g1 to g2. Assume that f is a quasi-isomorphism. Then there
exists an L∞-morphism form g1 to g2 inducing the inverse isomorphism between cohomology of complexes
gi, i = 1, 2. Also, for the case of differential graded algebras, L∞-morphism f induces an equivalence between
deformation functors associated with gi.

The first part of this theorem shows that if g1 is quasi-isomorphic to g2 then g2 is quasi-isomorphic to
g1, i.e. we get an equivalence relation.

The second part of the theorem works as follows. Any solution of the Maurer-Cartan equation in g1

depending formally on a parameter h̄:

γ(h̄) = γ1h̄ + γ2h̄
2 + . . . ∈ g1

1[[h̄]], dγ(h̄) +
1

2
[γ(h̄), γ(h̄)] = 0

produces a solution of the Maurer-Cartan equation in g2:

γ̃(h̄) =

∞
∑

n=1

1

n!
fn(γ(h̄) ∧ . . . ∧ γ(h̄)) ∈ g1

2[[h̄]], dγ̃(h̄) +
1

2
[γ̃(h̄), γ̃(h̄)] = 0 .

This theorem is essentially standard (see related results in [GM], [HS1]). My approach consists in the
translation of all relevant notions to the geometric language of formal Q-manifolds. The main technical
result in this approach is a (dual) version of Sullivan’s theory of minimal models (see [S]).

In order to formulate it we introduce two notions:

Definition. An L∞-algebra g is called minimal if the first Taylor coefficient Q1 of the differential Q
vanishes.

Definition. An L∞-algebra g is called linear contractible if all higher Taylor coefficients Qk, k ≥ 2 of
the differential Q vanish, and the cohomology of the differential Q1 on the garded space g vanish.

Lemma (Minimal Model Theory). Any L∞-algebra g is L∞-isomorphic to the product of a minimal
L∞-algebra gmin and a linear contractible L∞-algebra gcontr.

This lemma can be proved by induction in degrees of terms of coefficients of Taylor expansions (see
[K2]). From this lemma follows that the set of quasi-isomorphisms classes of L∞-algebras is in one-to-one
correspondence with the set of L∞-equivalence classes of minimal algebras.
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4. The main conjecture

Let X be a smooth manifold. We associate with it two differential graded Lie algebras. The first Lie
superalgebra D∗(X) is a subalgebra of the Hochschild complex of the algebra A of functions on X (see the
last paragraph of Section 2). The space Dn(X), n ≥ −1 consists of local Hochschild cochains A⊗(n+1)−→A
given by polydifferential operators. In local coordinates (xi) any element of Dn can be written as

φ0 ⊗ . . . ⊗ φn 7→
∑

(I0,...,In)

CI0,...,In
(x) · ∂I0(φ0) . . . ∂In(φn)

where the sum is finite, Ik denote multi-indices, ∂Ik denote corresponding partial derivatives, and φk and
CI0,...,In

are functions in (xi).
The second differential graded Lie algebra T ∗(X) is the Lie superalgebra of polyvector fields on X :

T n(X) = Γ(X,∧n+1TX), n ≥ −1

endowed with the standard Schouten-Nijenhuis bracket and with the differential d := 0.
We have an evident map f1 : T ∗(X)−→D∗(X):

f1 : (ξ0 ∧ . . . ∧ ξn) 7→

(

φ0 ⊗ . . . ⊗ φn 7→
1

n!

∑

σ∈Σn

sgn(σ)

n
∏

i=1

ξσi
(φi)

)

.

Here ξi are vector fields on X and φi are functions. By a version of Kostant-Hochschild-Rosenberg theorem
this map is a quasi-isomorphism of complexes.

Formality Conjecture. There exists an L∞-morphism f from T ∗(X) to D∗(X) with the first term f1

fixed as above.

In other words, this conjecture claims that T ∗(X) and D∗(X) are quasi-isomorphic differential graded
Lie algebras. In analogous situation in rational homotopy theory (see [S]), a differential graded commutative
algebra is called formal if it is quasi-isomorphic to its cohomology algebra endowed with zero differential.
This explains the name of my conjecture.

Solutions of the Maurer-Cartan equation in T ∗(X) are exactly Poisson structures on X . The gauge
group action is the action of the diffeomorphism group by conjugation. Thus, the conjecture implies that
every Poisson manifold can be canonically quantized.

4.1. Reformulation

Here I present an attempt to reformulate the formality conjecture in some vague terms. This part is
not essential for the rest of the paper and can be regarded as a deviation.

The Lie superalgebra T ∗(X) is the Lie superalgebra of functions on supermanifold ΠT ∗X (the odd
cotangent bundle to X) with respect to the odd Poisson bracket. Its quotient modulo the center (constant
functions) coincides with the Lie superalgebra of hamiltonian vector fields on ΠT ∗X . In order to get a more
neat formulation we can add one extra odd coordinate to ΠT ∗X and get a supermanifold Y with an odd
contact 1-form α. Lie superalgebra T ∗(X) coincides with the Lie superalgebra of infinitesimal automorphisms
of (Y, α).

I propose to consider the differential graded Lie algebra D∗(X) as the Lie algebra of infinitesimal
automorphisms in homotopy sense of the triangulated category Db(A − mod) (or, better, A∞-category, see
[K]), where A is the algebra of functions on X . First of all, the truncated algebra D≥0(X) is responsible for
automorphisms /deformations of A in the homotopy sense. When we add to it the term D−1(X) ≃ A then
it means that we consider inner automorphims of A as trivial. Morally, it is ananlogous to the passage from
groups to groupoids, i.e. to categories. I am sorry, but I can’t be more precise there.

Thus, the formality conjecture means that there exists a natural construction of an A∞-category from
a supermanifold with an odd contact 1-form (and vice versa).
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For me it looks as an odd version of the usual star-quantization of even symplectic manifolds. Construc-
tions by De Wilde - Lecomte and Fedosov (see [DL], F]) of the star-quantization of symplectic manifolds
show that with every symplectic manifold one can associate in a canonical way an equivalence class of an
associative algebra A over R[[h̄]]. Unfortunately, the algebra A itself can not be constructed canonically.
Nevertheless, after an additional work one can construct canonically an abelian category which is equivalent
to the category of A-modules (J. Bernstein, M.K., unpublished).

In the usual even situation the quantization of the algebraic symplectic manifold R2n with the standard
symplectic structure gives the algebra of polynomial differential operators on Rn. The symplectic group
acts by automorphisms of this algebra. In particular, the Fourier transform identifies algebras of polynomial
differential operators on dual vector spaces. It seems that in the odd symplectic geometry it corresponds
to the result of Beilinson and Bernstein-Gelfand-Gelfand on the equivalence (after small modifications) of
bounded derived categories of modules over symmetric and exterior algebras (see [B] and [BBG]). Morally,
triangulated categories for algebras of functions on Rn|0 and on R0|n are equivalent.

In paper [AKSZ] we proposed a Lagrangian for a topological two-dimensional sigma-model with the
target space being an odd symplectic manifold. There are some heuristic arguments (see [K1]) showing
that boundary conditions for topological field theories in two dimensions coupled with gravity form an
A∞-category. Thus, one can hope that the string theory can provide a proof of the formality conjecture.

5. Obstructions to formality

In this section we will show that if the formality conjecture is wrong then there exists a non-zero coho-
mology class in certain universal complex, the odd Graph Complex (various versions of the Graph Complex
were introduced in [K2]). Direct calculations with this complex show that the appropriate cohomology groups
vanish up to degree 6 in perturbation theory. It seems quite possible that all these cohomology groups of
the odd Graph Complex vanish.

5.1. General obstruction theory

Let g be a differential graded Lie algebra and g1 be its algebra of cohomology considered as a differential
graded Lie algebra (with zero differential). We are looking for a quasi-isomorphism between g and g1, i.e.
asking whether g is formal, or not. Let us start to construct components fi of an L∞-morphism from g1 to
g by induction. The first component can be constructed as a quasi-isomorphism of complexes f1 : g1−→g
which identifies graded Lie algebras g1 and H∗(g).

We assume that we already constructed components f1, . . . , fN satisfying first N equations on an L∞-
morphism:

∀n ≤ N dfn(γ1 ∧ . . . ∧ γn) =
∑

i<j

±fn−1([γi, γj ] ∧ γ1 ∧ . . . ∧ γn)+

+
1

2

∑

k,l≥1, k+l=n

1

k!l!

∑

σ∈Σn

±[fk(γσ1 ∧ . . . ∧ γσk
), fl(γσk+1

∧ . . . ∧ γσn
)] =

=





∑

i<j

±fn−1([γi, γj] ∧ γ1 ∧ . . . ∧ γn) +
∑

i

±[f1(γi), fn−1(γ1 ∧ . . . ∧ γi−1 ∧ γi+1 ∧ . . . ∧ γn)]



+

+
1

2

∑

k,l≥2, k+l=n

1

k!l!

∑

σ∈Σn

±[fk(γσ1 ∧ . . . ∧ γσk
), fl(γσk+1

∧ . . . ∧ γσn
)] .

Here we use the fact that the differential in g1 is equal to 0.
We want to solve analogous equation for n = N + 1. It is easy to see that the right hand side of this

equation is an element of Ker(d) ⊂ g. This follows directly from all previous equations. If for all γi the
r.h.s. belongs to Im(d) ⊂ Ker(d), we are ready to construct fN+1. The obstruction is a polylinear map:

Φ : ∧N+1(g1)−→g1[1 − N ] .
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I claim that this map is cocycle of the graded Lie superalgebra g1 with the coefficients in the (twisted
by [1 − N ]) adjoint representation. It means that

∑

i<j

±Φ([γi, γj ] ∧ γ0 ∧ . . . ∧ γN+1) +
∑

i

±[γi, Φ(γ0 ∧ . . . ∧ γi−1 ∧ γi+1 ∧ . . . ∧ γN+1)] = 0 .

Again, it follows directly from all previous equations.
Let us assume that the cohomology class of this cocycle is zero:

Φ(γ0 ∧ . . . ∧ γN ) =
∑

i<j

±Ψ([γi, γj ] ∧ γ0 ∧ . . . ∧ γN ) +
∑

i

±[γi, Ψ(γ0 ∧ . . . ∧ γi−1 ∧ γi+1 ∧ . . . ∧ γN)]

for some linear map Ψ : ∧N (g1)−→g1[1 − N ].
Then, if we replace fN by

f̃N : γ1 ∧ . . . ∧ γN 7→ fN(γ1 ∧ . . . ∧ γN ) + f1(Ψ(fN))

we obtain a new collection of maps (f1, . . . , f̃N) with vanishing obstruction to the existence of fN+1.
We see that the obstruction to the formality lies in cohomology groups which can be loosely denoted by

HN (g1,g1[1 − N ]). These cohomology groups are cohomology of complexes consisting in skew-symmetric
polylinear maps (in the tensor category of graded vector spaces) from g1 to g1[1 − N ] with the differential
imitating the usual Chevalley-Eilenberg differential.

5.2. Polyvector fields and the Graph Complex

Let us apply the general result to the Lie superalgebra of polyvector fields in the flat space Rd. As a
graded vector space this superalgebra T ∗(Rd) can be identified with the space of functions on supermanifold
Rd|d with coordinates xi, ξ

i, i = 1, . . . , d. The first group of coordinates, (xi) is pure even, in degree 0, the
second group (ξi) is purely odd, in degree +1. Loosely speaking, ξi corresponds to ∂/∂xi.

One can show that the first non-vanishing obstruction class, if it exists, should be in certain sense stable
(independent of the dimension). There is a natural class of stable cochains of T ∗(Rd) associated with finite
graphs. I claim that the obstruction class to the formality conjecture comes from a cohomology class in the
(odd) Graph Complex. The proof of this statement is too long and technical to include there. Thus, the
reader should consider the rest of this section only as an announcement.

Here follows the description of cochains associated with graphs. Let Γ be a finite non-oriented graph
(= finite 1-dimensional CW -complex) without multiple edges. If we enumerate vertices of this graph by
{1, . . . , n} then this graph is defined by its incidence matrix M = (Mkl) which is symmetric with entries in
{0, 1}.

Let us also enumerate the set of edges of Γ by {1, . . . , m}. The corresponding cochain of T ∗(Rd) is the
obtained by antisymmetrization from the following polylinear map g⊗n

1 −→g1[n − m − 1]:

φ1 ⊗ . . . ⊗ φn 7→









∏

k≤l, Mkl=1

Ωkl



 (φ1 ⊗ . . . ⊗ φn)





diag

.

Here on the r.h.s. the tensor product of functions φi on Rd|d is considered as a function on
(

Rd|d
)n

. The
ste of factors in the produact of Ωkl is in one-to-one corespondence with the ste of edges of Γ. Differential
operator Ω acts on functions on Rd|d × Rd|d by the formula

Ω =
∑

i

(

∂

∂xi

⊗
∂

∂ξi
+

∂

∂ξi
⊗

∂

∂xi

)

.

Operator Ωkl is a copy of Ω acting on the product of the k-th and the l-th factor of
(

Rd|d
)n

for k 6= l. For

k = l we define Ωkk as the differential operator on Rd|d

∑

i

∂2

∂xi∂ξi
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acting along the k-th factor of
(

Rd|d
)n

.

Operators Ωkl are odd anti-commuting differential operators on
(

Rd|d
)n

. In order to specify the meaning
of their composition we use the enumeration of the set of edges of Γ (up to an even permutation). Then we
restrict the result of the application of the composite operator to the tensor product of functions φk to the
diagonal, and obtain again a function on Rd|d.

Polylinear maps g⊗n
1 −→g1 obtained in this way are not antisymmetric in general. After antisymmetriza-

tion some graphs give automatically zero cochain. The result of the antisymmetrization does not depend on
the enumeration of vertices. Also, a boundary of the cochain given by a graph is obtained from a universal
linear combination of graphs.

Now we are going to describe the part of the graph complex relevant for the formality conjecture.

Definition. A finite graph is called good if it is nonempty, connected, nonseparable, has no multiple edges,
and the valency (degree) of each vertex is greater than or equal to 3. The condition of nonseparability means
that the complement to any vertex is connected.

It follows from the definition that any good graph has no simple loops. In terms of the incidence matrix
it means that all diagonal entries are 0. The simplest good graph has 4 vertices, it is the complete graph
(the skeleton of a tetrahedron). For a graph Γ we define a one-dimensional vector space Or(Γ) over Q. It is
the top exterior power of the vector space Qedges(Γ) spanned by the set of edges of Γ. The automorphism
group of Γ acts on the space Or(Γ). If this action is non-trivial, i.e. there exists an automorphism acting by
(−1) on Or(Γ), then the corresponding cochain of the Lie superalgebra of polyvector fields vanishes.

The Graph complex will be bi-graded, with the differential of degree (+1, +1).
The graded component Gn,m is defined as

⊕

classes of Γ

(Or(Γ))Aut(Γ) .

Here the sum is taken over all isomorphism classes of good graphs with n vertices and m edges. For each
isomorphism class we choose a representative and take the space of coinvariants. This space does not depend
on the choice of a representative.

It follows form the definiton of the Graph complex that every good graph Γ with enumerated edges de-
fines an element in Gn,m. We denote this element by [Γ, enum] where enum denotes the choosen enumeration
of edges. We are going to write a formula for d[Γ, enum].

Let v be a vertex of graph Γ of degree ≥ 4. Denote by Sv the set of edges connected to v. Let us
represent Sv as a disjoint union of two sets of cardinality ≥ 2: Sv = S1

v ⊔ S2
v . With such a structure we

associate a new good graph Γ′ = Γ′(v, S1
v , S2

v). This graph has n + 1 vertices and m + 1 edges.
Fisrt of all, we remove vertex v and all edges from Sv from Γ. Then we add two new vertices v1 adn v2.

Edges from the set S1
v we connect to v1 (and to the same vertex in Γ \ {v} as it was in Γ), edges from S2

v

connect to v2, both new vertices v1 and v2 connect by a new edge e. We obtain graph Γ′. The set of edges
of Γ′ is obtained from the set of edges of Γ by adding a new element e. Thus, we get an enumeration enum′

of edges of Γ′ by attaching number m + 1 to the edge e.
The formula for the differential in the Graph Complex is

d[Γ, enum] =
∑

(v,S1
v ,S2

v)

[Γ′(v, S1
v , S2

v), enum′(v, S1
v , S2

v)] .

The square of this operator is equal to zero.

Claim. Let us assume that the formality conjecture for flat spaces X = Rd, d = 1, 2, . . . holds up to the
(n − 1)-st term in the perturbation theory. Then the possible obstruction on to the formality on the n-th
step comes from a cohomology class of the graph complex in degree (n, 2n− 3).

Elementary counting shows that Gn,2n−3 = 0 for n ≤ 6. Thus, we get a confirmation of the formality
conjecture with a great precision.

In fact, any good 3-valent graph gives a cohomology class of the Graph Complex. Thus one can expect
plenty of non-trivial cohomology classes in degrees (k, l) where l/k = 3/2. It seems quite plausible that
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degrees in which cohomology is non-trivial are close to the line l/k = 3/2 and there is no cohomology in
degrees (n, 2n − 3) (close to the line l/k = 2) at all!

5.3. A flow on the space of Poisson manifolds

If we believe in the formality conjecture, we can ask ourselves whether the desired quasi-isomorphism is
unique up to homotopy, or not. The corresponding cohomology groups of the graph complex have degrees
(n, 2n− 2). I am aware of only one such a class, it corresponds to simplest good graph, the complete graph
with 4 vertices (and 6 edges). This class gives a remarkable vector field on the space of bi-vector fields on
Rd. The evolution with respect to the time t is described by the following non-linear partial differential
equation:

dα

dt
:=

∑

i,j,k,l,m,k′,l′,m′

∂3αij

∂xk∂xl∂xm

∂αkk′

∂x′
l

∂αll′

∂x′
m

∂αmm′

∂x′
k

(

∂

∂xi

∧
∂

∂xj

)

where α =
∑

i,j αij(x) ∂
∂xi

∧ ∂
∂xj

is a bi-vector field on Rd.

A priori we can guarantee the existence of a solution of the evolution only for small times and real-
analytic initial data.

More generally, this class produces a formal one-parameter group of L∞-automorphisms of T ∗(Rd).
It follows from general properties of cohomology that 1) this evolution preserves the class of (real-

analytic) Poisson structures, 2) if two Poisson structures are conjugate by a real-analytic diffeomorphism
then the same will hold after the evolution. Thus, our evolution operator is essentially intrinsic and does
not depend on the choice of coordinates.

In fact, I cheated a little bit. In the formula for the vector field on the space of bivector fields which
one get from the tetrahedron graph, an additional term is present. This term is equal (up to a numerical
factor) to

∑

i,j,k,l,m,n,p,r

∂2αij

∂xk∂xl

∂2αkm

∂xn∂xp

∂αnl

∂xr

∂αrp

∂xj

(

∂

∂xi

∧
∂

∂xm

)

.

It is possible to prove formally that if α is a Poisson bracket, i.e. if [α, α] = 0 ∈ T 2(Rd), then the
additional term shown above vanishes.

I tried in vain to find any example where my evolution operator really changes the conjugacy class of
a Poisson bracket. The problem is that principal examples of Poisson brackets have coefficients which are
either linear (Kirillov bracket), or quadratic polynomials (classical Sklyanin algebras). In the evolution I use
third derivatives. Also, in dimension d = 2 the direct calculation shows that the evolution operator gives a
conjugation of bivector field α by a vector field whose coefficients are differential polynomials in coefficients
of α. Nevertheless, it is easy to check that in higher dimensions it is impossible to obtain a formal proof
of triviality of the evolution operator. I don’t know whether one can construct the evolution operator on
arbitrary Poisson manifolds, not necessarily embeddable into the Euclidean space of the same dimension.

The formality conjecture implies that there should be analogous (formal) evolution operator on equiv-
alence classes of non-commutative algebras close to algebras of functions on smooth manifolds.

As a side remark, I would like to mention that the cohomology of the odd Graph Complex form a Lie
superalgebra which acts on the space of equivalence classes of germs of QP -manifolds (see [AKSZ] for the
definition).

6. Comments and further evidences

In the formulation of the formality conjecture I didn’t express all my wishes. First of all, graded compo-
nents f(k1,...,kn) of the desired L∞-morphism f form T ∗(X) to D∗(X) should be given by local expressions,
i.e. by polydifferential operators in coefficients of polyvector fields.

Also, it would be nice to formulate the conjecture using the language of sheaves:

6.1. Sheaves
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Differential graded Lie algebras D∗(X) and T ∗(X) are global sections of natural sheaves D∗ and T ∗.
By “naturalness” I mean that sheaves are defined in a coordinate-independent way. Sheaves D∗ and T ∗ can
be defined not only for C∞-manifolds, but also for complex-analytic manifolds and for algebraic manifolds
defined over a field of characteristic zero. One can just hope that there is a natural sheaf X ∗ of differential
graded Lie algebras on manifolds (in a wide sense) with natural morphisms which are quasi-isomorphisms,
to both sheaves D∗ and T ∗.

6.2. Cup-products on the tangent cohomology

If g is a differential graded Lie algebra and γ ∈ g⊗m is a solution of the Maurer-Cartan equation, where
m is an Artin algebra, then one can define the tangent cohomology T ∗(γ) responsible for the deformation
of γ. This is the cohomology group of the complex g ⊗ m endowed with the differential d′ := d + ad(γ).
Cohomology groups are modules over m. A more delicate invariant is the isomorphism class of this complex
in the derived category of m-modules. Again, any quasi-isomorphism induces the isomorphism of the tangent
cohomology.

Let (X, α) be a Poisson manifold, i.e. α ∈ T 1(X), [α, α] = 0. Thus we get a solution of the Maurer-
Cartan equation in T ∗(X) depending on formal variable h̄:

α(h̄) = α · h̄ ∈ T 1[[h̄]] .

Assuming the formality conjecture we get a solution of the Maurer-Cartan equation in D∗(X), i.e. an
associative algebra A over R[[h̄]] which is isomorphic to C∞(X)[[h̄]] as R[[h̄]]-module.

On both tangent cohomology for T ∗(X) and for D∗(X) there is a natural cup-product of degree +1.
For the the Lie superalgebra T ∗(X) we use just the usual cup-product of polyvector fields. For the

case of D∗(X) we use the interpretation of tangent cohomology (Hochschild cohomology) as the Ext-groups
shifted by [1]:

Ext∗A⊗R[[h̄]]Ao−mod(A,A)[1] .

Then the Yoneda product gives a cup-product in tangent cohomology.
The tangent cohomology for the graded Lie algebra T ∗(X) coincides (after tensoring ⊗R[[h̄]]R((h̄))) with

the tensor product of R((h̄)) with the Poisson cohomology of (X, α) shifted by [1]. The Poisson cohomology
HP ∗(X, α) is defined as the cohomology of the complex T ∗(X)[−1] endowed with the differential ad(α).

Conjecture about cup-products. Assuming the formality conjecture, the cup product on tangent co-
homology for a solution of the Maurer-Cartan equation in T ∗(X) coincides with the cup-product on the
tangent cohomology for the corresponding solution in D∗(X).

I am aware about one non-trivial example, confirming this conjecture. Namely, let X be the vector
space dual to a Lie algebra g and α will be the usual Kirillov-Poisson structure on X = g∗. The space X is
considered here as an algebraic manifold, not a C∞-manifold. I claim that the quantization of this Poisson
manifold should be the universal enveloping algebra Uh̄(g) where the variable h̄ is used as the deformation
parameter:

Uh̄(g) = algebra over R[[h̄]] generated by g/{relations X · Y − Y · X = h̄[X, Y ]} .

The reason for this claim is based on certain considerations in invariant theory. Namely, the deformation
Uh̄(g) should correspond to a 1-parameter family of Poisson structures on X = g∗. Using GL(g)-invariant
expressions in coefficients of the structure tensor of the Lie algebra g one can get only the standard linear
Kirillov bracket. There is no invariant way to construct a polylinear map ∧2(g)−→Symk(g) for k ≥ 2, i.e.
no way to get higher coefficients in the Taylor expansion for a Poisson bracket.

The Poisson cohomology in degree 0 of (X, α) is equal to the algebra of functions on X invariant under
the coadjoint action. The Hochshild cohomology of U(g) in degree 0 is the center Z(U(g)) of the universal
enveloping algebra. Of course, in the definition of tangent cohomology we should include variable h̄ into the
game.
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It is well-known that vector spaces HP 0(X, α) and Z(U(g)) can be canonically identified:

HP 0(X, α) ≃

∞
⊕

k=0

(

Symk(g)
)g

≃ (U(g))
g
≃ Z(U(g)) .

Nevertheless, the most naive identification does not preserve the algebra structure.
Fortunately, a long time ago M. Duflo (see [D]) based on Kirillov ’s “universal formula” for characters

of representations of Lie groups, constructed a different map HP 0(X, α)−→Z(U(g)) which gives an isomor-
phism of algebras. For the case of semi-simple Lie algebras it is the Harish-Chandra isomorphism. Strictly
speaking, the construction of Duflo was done only for solvable Lie algebras. Nevrtheless, if one include the
formal parameter h̄, the formula became universal and didn’t require the classification theory of Lie algebras.
It seems that it works for finite-dimensional Lie algebras in arbitrary tensor categories in characteristic zero,
although I am not aware of a general proof. Coefficients in Duflo-Kirillov formulas are quite non-trivial, they
are equal essentially to the Bernoulli numbers.
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